add more test content
This commit is contained in:
parent
7ee9f4c961
commit
ef3224c280
29
tools/yices.md
Normal file
29
tools/yices.md
Normal file
@ -0,0 +1,29 @@
|
||||
+++
|
||||
date = 2024-02-02T04:14:54-08:00
|
||||
draft = false
|
||||
title = 'Yices 2'
|
||||
purposes = ['Verification Tools', 'Analysis Tools']
|
||||
techniques = ['Theorem Proving', 'SMT Solving', 'Model Checking']
|
||||
domains = ['Software Verification', 'Hardware Verification', 'Embedded Systems']
|
||||
languages = ['SMT-LIB', 'Yices language', 'C', 'OCaml', 'Python']
|
||||
systems = ['Discrete Systems', 'Concurrent Systems']
|
||||
interactions = ['CLI', 'C API', 'OCaml API', 'Python Bindings']
|
||||
formalisms = ['first-order logic', 'SMT-LIB', 'quantifier logic', 'bit-vectors', 'arrays', 'uninterpreted functions', 'arithmetic']
|
||||
developers = ['SRI International']
|
||||
links = [
|
||||
{ title = "Homepage", url = "https://yices.csl.sri.com/" },
|
||||
{ title = "Source Code", url = "https://github.com/SRI-CSL/yices2" },
|
||||
{ title = "Documentation", url = "https://yices.csl.sri.com/yices2-documentation.html" }
|
||||
]
|
||||
publications = ['Dutertre2014']
|
||||
+++
|
||||
|
||||
Yices is a high-performance SMT solver and theorem prover developed by SRI International. It is widely used for checking the satisfiability of logical formulas over various theories, including arithmetic, bit-vectors, arrays, and uninterpreted functions. Yices supports the SMT-LIB standard and its own input language, and provides APIs for several programming languages, making it suitable for integration into formal verification, program analysis, and constraint solving tools.
|
||||
|
||||
### Features
|
||||
|
||||
- **SMT Solver:** Supports a wide range of theories and quantifiers.
|
||||
- **Multi-language APIs:** C, OCaml, Python, and more.
|
||||
- **Cross-platform:** Available on Windows, Linux, and macOS.
|
||||
- **Active development:** Open source and maintained by SRI International.
|
||||
|
39
tools/z3.md
39
tools/z3.md
@ -1,22 +1,31 @@
|
||||
+++
|
||||
date = 2024-02-02T04:14:54-08:00
|
||||
draft = false
|
||||
title = 'Z3 Theorem Prover'
|
||||
weight = 10
|
||||
purposes = ['test']
|
||||
techniques = ['aaa']
|
||||
domains = ['tttt']
|
||||
languages = ['tttt']
|
||||
systems = ['tttt']
|
||||
interactions = ['lorem ipsum', 'aranpoxasi', 'aranpsoasi', 'aranpoasai', 'aransdpoasi', 'aranpoaswei', 'aranapoasi', 'aranpoasi', 'aranpoasi', 'aranpoasasdfasfasdfasdfi', 'araafafanpoasi', 'aranpoasi', 'aranpoasi', 'aranpoasadfsi']
|
||||
formalisms = ['tttt']
|
||||
developers = ['test dev']
|
||||
title = 'Z3'
|
||||
purposes = ['Verification Tools', 'Analysis Tools']
|
||||
techniques = ['Theorem Proving', 'SMT Solving', 'Model Checking']
|
||||
domains = ['Software Verification', 'Hardware Verification', 'Embedded Systems']
|
||||
languages = ['SMT-LIB', 'Python', 'C++', 'Java', 'C#']
|
||||
systems = ['Discrete Systems', 'Concurrent Systems']
|
||||
interactions = ['CLI', 'Python API', 'Rust Bindings', 'playground']
|
||||
formalisms = ['first-order logic', 'SMT-LIB', 'quantifier logic', 'bit-vectors', 'arrays', 'uninterpreted functions', 'arithmetic']
|
||||
developers = ['Microsoft Research']
|
||||
links = [
|
||||
{ title = "website", url = "https://github.com/Z3Prover/z3" },
|
||||
{ title = "code", url = "https://github.com/Z3Prover/z3" },
|
||||
{ title = "playground", url = "https://rise4fun.com/z3" }
|
||||
{ title = "Homepage", url = "https://github.com/Z3Prover/z3" },
|
||||
{ title = "Source Code", url = "https://github.com/Z3Prover/z3" },
|
||||
{ title = "Discussions", url = "https://github.com/Z3Prover/z3/discussions" },
|
||||
{ title = "Documentation", url = "https://z3prover.github.io/api/html/" },
|
||||
{ title = "Playground", url = "https://rise4fun.com/z3" }
|
||||
]
|
||||
publications = ['Taylor2023']
|
||||
publications = ['deMoura2008']
|
||||
+++
|
||||
|
||||
desc
|
||||
Z3 is a high-performance SMT solver and theorem prover developed by Microsoft Research. It is widely used for checking the satisfiability of logical formulas over various theories, including arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 supports the SMT-LIB standard and provides APIs for several programming languages, making it suitable for integration into formal verification, program analysis, and constraint solving tools.
|
||||
|
||||
### Features
|
||||
|
||||
- **SMT Solver:** Supports a wide range of theories and quantifiers.
|
||||
- **Multi-language APIs:** Python, C++, Java, .NET, and more.
|
||||
- **Cross-platform:** Available on Windows, Linux, and macOS.
|
||||
- **Active development:** Open source and maintained by Microsoft Research.
|
||||
- **Web Playground:** Try Z3 online at [Rise4Fun](https://rise4fun.com/z3).
|
||||
|
Loading…
x
Reference in New Issue
Block a user